Seclai

Seclai

Pricing

Google Text Multilingual Embedding 002

EMBEDDER

Text Multilingual Embedding 002 converts text into vector representations optimized for cross-lingual semantic search, RAG, and clustering across numerous languages with 2048-token context.

Back to models

Provider

Google

Credits per 1k words

0.07

Max input tokens

3,072

Dimensions

256
384
512
768

MTEB retrieval score

59.68

Supported languages

ar
bg
bn
cs
da
de
el
en
es
et
fi
fil
fr
hi
hr
hu
id
it
ja
ko
lt
lv
ms
nl
no
pl
pt
ro
ru
sk
sl
sv
sw
ta
te
th
tr
uk
vi
zh